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Abstract. We study the transport properties of two-dimensional striped media in thex–y plane
with disorder that has long-range correlation along they-direction. This long-range correlation
is reflected by a special form of the Fourier transformation of the spatial distribution of the site
energiesS(k) ∝ 1/kα with k being the wave vector in they-direction. Using the transfer-matrix
method, we show that there is a continuous line of fixed points forα > 2 indicating that the system
undergoes a disorder-driven Kosterlitz–Thouless-type metal–insulator transition.

1. Introduction

The problem of Anderson localization in randomly layered media with isotropic randomness
has been extensively studied in recent years [1, 2]. Physically, this system describes the
Earth’s subsurface and superlattices with lateral inhomogeneities. The study of localization
phase diagrams in three dimensions (3D) has indicated that, when the ratio of the strength
of the layer randomness to that of the isotropic randomness is larger than a certain critical
value, the system behaves in a 1D-like fashion and all states are localized [1]. These results
are in remarkable contrast to those for the anisotropic hopping model, where metal–insulator
transitions (MIT) were found to occur at any anisotropy [3].

Recently, extensive attention has been attracted to the delocalization problem in low-
dimensional systems with correlated disorder. The scaling theory of localization predicts that
all states are localized in one or two dimensions for any amount of disorder [4]. However, a
series of 1D correlated disordered systems have been studied which exhibit a set of delocal-
ization states [5–8]. In the random-dimer model [5, 6] where the impurities are randomly
embedded in nearest-neighbour pairs in an originally pure host chain,

√
N of the electronic

stationary states are extended over the entire lattice. Absence of localization has also been
reported to occur in disordered chains with correlated off-diagonal interactions [7, 8]. More
recently, de Moura and Lyra [9] studied the localization properties of the 1D Anderson model
with long-range-correlated disorder. The on-site energy landscape is generated by considering
the potential as the trace of a fractional Brownian motion with a specified spectral density
S(k) ∝ 1/kα. It has been found that the localization length diverges forα > 2 within a
finite range of energy values exhibiting an Anderson transition with mobility edges separating
localized and extended states.
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The purpose of the present paper is to study how the localization behaviour in a 2Dx–y
plane is affected by the long-range correlation of disorder. This is of particular interest because
2D is the critical dimensionality in the scaling theory. We consider the correlation of random
on-site energies in one direction for which the propagation of electrons is investigated. To
do this we use a striped geometry with stripes along thex-direction, similar to the layered
one in the 3D systems used in references [1, 2]. The random on-site energies are considered
to be a superposition of the isotropic random site energies which have the same distribution
in both directions as in the ordinary Anderson model and the random stripe energies which
are arranged in such a sequence that describes the trace of a fractional Brownian motion with
a specified spectral densityS(k1) ∝ 1/kα1 with k1 being the wave vector in they-direction
normal to the stripes. Thus, within a stripe the randomness is uncorrelated, exhibiting a white-
noise spectrumS(k2) ∝ k0

2 with k2 being the wave vector in thex-direction. There is a
correlated component of the randomness in they-direction from stripe to stripe. We calculate
the localization length and the conductance of such systems with the transfer-matrix method.
We find that all one-electron states remain localized for any amount of isotropic disorder for
α < 2, but there exists a line of critical points forα > 2 indicating that the system undergoes
a disorder-driven Kosterlitz–Thouless-type (KT) metal–insulator transition. By comparison
with the results for the 1D system where a similar correlation of disorder exists [9], the energy
range of the extended states is remarkably enlarged by increasing the dimensionality from 1D
to 2D. On the other hand, for 2D systems the finite-size scalingansatzcan be more easily
adopted and it shows the KT nature of the transition in the present structure of the disorder
correlation.

This paper is organized as follows: in the next section we describe the Hamiltonian
and basic formalism for the 2D disordered system with long-range correlation, in section 3
the numerical results are illustrated, and the last section is devoted to a brief summary and
discussion.

2. Model of 2D long-range-correlated disorder

We consider a 2D tight-binding Anderson model on a square lattice

H =
∑
i,m

εim|im〉〈im| +
∑
〈im,jn〉

t (|im〉〈jn| + |jn〉〈im|) (1)

wherei andm are integers numbering the position of a site in thex- andy-directions, resp-
ectively,〈im, jn〉 denotes nearest neighbours on the lattice,t is the hopping matrix element,
andεim the site energy at site(i,m). In what follows we sett to be the unit of energy. The
stripes are along thex-direction, and we assume that there is a long-range correlation of the
disorder in they-direction from stripe to stripe. In such a structure the random on-site energy
εim consists of two parts [1,2]:

εim = ηm + νim (2)

whereνim is an isotropic random number that varies independently from site to site with a
flat probability distribution within the range [−W/2,W/2], andηm describes the stripe energy
which is constant for sites lying in themth stripe but is randomly distributed from stripe to
stripe in a long-range-correlated manner. In order to describe this long-range correlation we
assume that the stripe energyηm describes the trace of a fractional Brownian motion with a
specified spectral densityS(k) ∝ 1/kα for its spatial distribution. Thusηm can be given by
the relation [9]

ηm =
L/2∑
k=1

[
k−α

(
2π

L

)(1−α)]1/2

cos

(
2πmk

L
+ θk

)
(3)
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whereL is the total number of stripes andθk areL/2 independent random phases uniformly
distributed in the interval [0, 2π ]. The exponentα is related to the Hurst exponent of the
rescaled range analysis which describes the self-similar character of the series and the persistent
character of its increments [10]. Forα = 0 one recovers 2D randomly striped media with
uncorrelated disorder in they-direction. In the case ofα = 2 the sequence of the stripe energies
resembles the trace of the usual Brownian motion. In the absence ofW , the momentum in the
x-directionpx is a good quantum number and for a givenpx the motion in they-direction is
a 1D one for which the extended states have already been confirmed within a finite range of
energy forα > 2 [9]. In the case of finiteW , the system can be regarded as a 2D Anderson
model superposed with a random stripe potential with long-range correlation. Our aim is to
investigate the effect of such an additional correlated randomness on the states that are already
localized in the original Anderson model.

3. Finite-size scaling analysis

In order to calculate the localization length of electrons, we use the finite-size-scaling method
combined with the transfer-matrix technique [11]. We calculate the damping of wave functions
in they-direction (the direction with long-range correlation) for a long strip of sizeM × L
whereL is an extremely large length along they-direction andM is the width of the strip.
For a specific energyE, a 2M × 2M transfer matrixTm can easily be set up mapping the
wave-function amplitudes at columnm− 1 andm to those at columnm + 1 in the strip. The
propagation along the strip is therefore described by the product of the transfer matrices [11]

QL =
L∏
m=1

Tm. (4)

The total transfer matrix of equation(4) hasM pairs of eigenvalues whose absolute values of
logarithms correspond to the Lyapunov exponents of the wave functions [11],(γi,−γi) with
i = 1, 2, . . . ,M. The largest localization lengthλM(E) for energyE in a system with finite
widthM is given by the inverse of the smallest positive Lyapunov exponent. After obtaining
all of the Lyapunov exponents for the strip of widthM, the corresponding conductance in units
of e2/h along they-direction of a square system with linear sizeM can be calculated as [11]

G =
M∑
i=1

2

cosh2 γiL
. (5)

In our numerical calculation, we choose the length of the stripL to be over 105 so that the
self-averaging effect automatically takes care of the statistical fluctuations. We estimate and
control these fluctuations from the deviations of the calculated eigenvalues of two adjacent
iterations which show satisfactory suppression by increasingL. The finally obtained data have
statistical errors less than the symbol size in the corresponding figures, so no explicit error bars
are indicated.

We use the standard one-parameter finite-size scalingansatz[11] to obtain the thermo-
dynamic localization lengthξ . According to the one-parameter scaling theory, the rescaled
localization lengthλM/M can be expressed in terms of a universal function ofM/ξ , i.e.,

λM

M
= f

(
M

ξ

)
. (6)

We first study the localization behaviour of the system at the band centreE = 0 for typical
values ofα. In figure 1, we plot the rescaled localization lengthλM/M as a function of disorder
W for α = 1.5. The conductanceG is calculated and shown in the inset of figure 1. Within
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Figure 1. The rescaled localization lengthλM/M as a function of disorderW atE = 0 forα = 1.5.
Inset: the conductanceG versusW .

numerical fluctuations, the curves of the smallerMs are always above those of the largerMs
throughout the entire range of disorderW , indicating that there is no metal–insulator transition
for any finiteW . We also find that all of the states are localized at the band centre forα < 2.
However, this picture is qualitatively different forα > 2. In figure 2 we show the curves
for the same parameters as for figure 1 except thatα = 2.5. The striking difference from
figure 1 is that all curves merge together forW < Wc ' 3. This shows that there is a line of
critical points forW < Wc, indicating that the system undergoes a disorder-driven KT-type
transition [12]. In the left-hand inset of figure 2, we extract the value of the localization length
at the thermodynamical limitξ from the scalingansatzand successfully fit the data with

ξ ∝ exp(θ1/
√
W −Wc)

indicating the exponential decay of the localization length on the insulating side by increasing
the deviation from the transition point. This behaviour is a typical one for the KT transition
[12, 13] and can provide further evidence for the KT-type transition. By fitting we find that
Wc = 2.8± 0.2, andθ1 = 5.1± 0.1, the values of the parameters in the above exponential
behaviour for the deviation ofW fromWc on the insulator side.

In the usual continuous phase transition all of the curves in the finite-size-scaling studies
should cross at a single point. One example of the delocalization–localization transition of this
type in 2D is the case with spin–orbit interaction [14]. In the present case the transition is not
a usual sharp continuous transition on the extended side. In this sense the phase on this side
is not a true metallic state but only a critical one. The scaling behaviour can be investigated
more generally by the calculation of the conductance of a square system. Theβ-function is
defined as the logarithmic derivative of the conductance with respect to the system size. From
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Figure 2. The rescaled localization lengthλM/M as a function of disorderW atE = 0 forα = 2.5.
Left-hand inset: the fit of the thermodynamic localization lengthξ with the characteristic formula
of the KT transition. Symbols show the numerical data. Right-hand inset: the conductanceG as a
function of disorderW .

equation (5) theβ-function has the propertyβ ∝ d ln(λM/M)/d lnM [11]. The curves for
λM/M with differentM for W < Wc merging together imply thatβ = 0 in the metallic
regime. Thus, it is expected that in this case the conductanceG is also independent of the
system size. In the right-hand inset of figure 2 we show the calculated conductance of a square
systemG as a function ofW for different sizes. It is clear to see that the curves forG with
differentM merge together and are independent ofM forW < Wc, as expected. In the present
case theβ-function may not be an analytical function ofW in sweeping acrossWc, owing to
its zero value on the extended side and the exponential decay of the localization length on the
insulator side. This is different from the ordinary continuous transition, and theβ-function
is used here only to provide a measure of the scaling behaviour of the system in the general
scaling transformation.

Next we investigate the MIT in the band for a fixed disorderW . Presented in figure 3 is the
rescaled localization lengthλM/M as a function of energyE withW = 2 forα = 2.5. Figure 3
shows a behaviour of theλM/M–M dependence similar to that of figure 2—namely, all curves
merge together forE < Ec ' 1.3. In the inset of figure 3, we fitξ with the characteristic
formula of KT transition

ξ ∝ exp(θ2/
√
E − Ec)

with θ2 = 3.2± 0.1 andEc = 1.4± 0.12.
We expect the mobility edgeEc to shift to higher energy with increasing value ofα because

the extended states are more favourable in this situation. This is exactly what we observe in our
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Figure 3. The rescaled localization lengthλM/M as a function of energyE with W = 2 for
α = 2.5. Inset: the fit of the thermodynamic localization lengthξ with the characteristic formula
of the KT transition.

calculation. In figure 4, we show the phase diagram in the(Ec, α) plane for a fixed disorder
with W = 2. The states in region I are extended whereas the states in region II are localized.
The range of energies corresponding to extended states increases withα, with the width of the
extended phase saturating asα → ∞. By comparison with the results for a 1D disordered
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Figure 4. The phase diagram in the(Ec, α) plane forW = 2. The states in regimes I and II are
extended and localized, respectively.
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system with long-range correlation, it can be seen that the energy range for the extended states
is remarkably enlarged. This is seen to be reasonable by considering that the 2D system is more
favourable for the extended states than the 1D system. It is noteworthy that the correlation of
disorder in one direction in 2D can even delocalize the states in the presence of an isotropic
uncorrelated disorder which originally causes all the states to be localized.

In the present paper we only consider the propagation along they-direction in which
the long-range correlation of disorder exists. As for the propagation of electrons in thex-
direction, the effect of the correlation can appear only if the width of the strip adopted in the
finite-size-scaling study is comparable with the length of the correlation. This is difficult for
the present case since the correlation range is quite large. The transition point may be different
in different directions since the transition is no longer a usual second-order one and more than
one transition point is allowed. It would be interesting to investigate this problem by using
another method.

4. Conclusions

In summary, we have studied the localization properties in 2D randomly striped media
with long-range-correlated disorder in one direction using the well-developed transfer-matrix
method. We find that the system undergoes a disorder-driven KT-type metal–insulator
transition once the stripe energy disorder distribution exhibits a power-law spectral density
S(k) ∝ 1/kα with α > 2. This result is in remarkable contrast to what one would expect for
2D disordered media with uncorrected disorder, where all states are localized for any amount
of disorder [2].
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